Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.

نویسندگان

  • Takeshi Adachi
  • Hirofumi Kunitomo
  • Masahiro Tomioka
  • Hayao Ohno
  • Yoshifumi Okochi
  • Ikue Mori
  • Yuichi Iino
چکیده

Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in Caenorhabditis elegans

Gq is a heterotrimeric G protein that is widely expressed in neurons and regulates neuronal activity. To identify pathways regulating neuronal Gq signaling, we performed a forward genetic screen in Caenorhabditis elegans for suppressors of activated Gq. One of the suppressors is an allele of sek-1, which encodes a mitogen-activated protein kinase kinase (MAPKK) in the p38 MAPK pathway. Here, we...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans.

The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin re...

متن کامل

A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans.

An insulin receptor-like signaling pathway regulates Caenorhabditis elegans metabolism, development, and longevity. Inactivation of the insulin receptor homolog DAF-2, the AGE-1 PI3K, or the AKT-1 and AKT-2 kinases causes a developmental arrest at the dauer stage. A null mutation in the daf-16 Fork head transcription factor alleviates the requirement for signaling through this pathway. We show ...

متن کامل

Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans

Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 186 4  شماره 

صفحات  -

تاریخ انتشار 2010